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• Introductory material
- Describe Gkeyll and numerical method
- Collision operator and magnetic pumping
- Field-particle correlations

• Non-relativistic, collisionless transverse shock
- Particle heating
- Entropy production



Gkeyll Simulation Framework



“It is one thing to mortify curiosity, another to conquer it.”
• The Gkeyll framework is flexible suite of solvers for plasma physics 

being developed at the Princeton Plasma Physics Lab, UMD, Virginia 
Tech, and MIT

• Solvers include a finite volume method for equations written in 
conservative form and a discontinuous Galerkin finite element method 
for systems of equations which can be written in terms of a Poisson 
bracket

• Multiple Vlasov-Maxwell publications already:

• P. Cagas, A. Hakim, J. Juno, B. Srinivasan, Continuum kinetic and multi-fluid simulation 
of a classical sheath, Phys. Plasmas (2017). 

• P. Cagas, A. Hakim, B. Srinivasan, Nonlinear saturation of the Weibel instability, Phys. 
Plasmas (2017).  

• J. Juno, A. H. Hakim, J. M. TenBarge, B. Dorland, E. L. Shi, Discontinuous Galerkin 
algorithms for fully kinetic plasmas. JCP (2018). 

• I. Pusztai, J. M. TenBarge, A. N. Csapo, J. Juno, A. Hakim, L. Yi, T. Fulop, Low Mach-
number collisionless electrostatic shocks and associated ion acceleration, PPCF (2018) 

• V. Skoutnev, A. Hakim, J. Juno, J. M. TenBarge, Temperature Dependent Saturation of 
Weibel Type Instabilities in Counter-Streaming Plasmas, ApJL in press 

• A. Sundstrom, J. Juno, J. M. TenBarge, and I. Pusztai. Effect of a weak ion collisionality 
on the dynamics of kinetic electrostatic shocks, JPP (2019) 

• J. Juno and A. Hakim, Generating a Quadrature and Matrix-free Discontinuous Galerkin 
algorithm for (plasma) kinetic equations, In preparation.  

• A. Hakim, M. Francisquez, J. Juno, G. W. Hammett, Conservative Discontinuous 
Galerkin Schemes for Nonlinear Fokker-Planck Collision Operators, In preparation  

The Gkeyll (and Hyde) Framework*

*https://gkyl.readthedocs.io/



The Discontinuous Galerkin Finite Element Method
We choose to use the discontinuous Galerkin framework to discretize the full phase 
space of the Vlasov-Maxwell system because it combines aspects of

-Finite elements: high order accuracy and ability to handle complicated 
geometries

-Finite volume: locality of data and stability enforcing limiters
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Upwind fluxes are used for the streaming term and a relaxed global Lax-Friedrichs flux is used for the acceleration

• What does the discontinuous Galerkin discretization of the Vlasov equation look like?

• Consider a phase space mesh      with cells                                  . T Kj 2 T , j = 1, . . . , N

• Then the problem formulation is, find             , such that for all            ,  fh 2 Vp
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note that the phase space flux is continuous at corresponding surface interfaces
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The Discrete Vlasov Equation
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∂fs
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+∇ · (vfs) +∇v · (Fsfs) = 0

The Discrete Vlasov Equation

Conserves
Number density

Energy
L2 norm of the distribution decays monotonically

Cost Mitigation
Lua-JIT & C++

Computer algebra pre-generated kernels
MPI + MPI-3 shared memory

Reduced basis sets



Serendipity Finite Elements [Arnold & Awanou (2011)]

What does our basis function expansion look like?

We are employing a reduced basis set which gives the same formal
convergence mathematically, called the Serendipity Basis
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Np =

min(d,p/2)∑

i=0

2n−i

(
d

i

)(
p− i

i

)

• We use the Serendipity finite element basis set to mitigate the curse of
dimensionality cost but retain the same formal convergence order

• Monomials with super-linear degree greater than p are dropped

• Consider d = 3, p = 2:
Retain x2yz
Drop x2y2z



Collision Operator in Gkeyll

1. Introduction

The motion of charged particles in a plasma is due to self-consistent mean electromagnetic field and cumulative
e↵ects of fluctuating fields. The latter can be approximated e↵ectively as small-angle collisions. This approximation
is in contrast to the case of neutral particles that travel in straight lines between “hard-sphere” collisions. A fully
ionized plasma is described by Vlasov-Maxwell-Fokker-Planck (VM-FP) equation for the phase-space distribution
function, f (t, x,v), written as

@ fs

@t
+ r · (v fs) + rv · (as fs) =
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!

c
. (1)

Here as = (qs/ms) (E + v ⇥ B) is the acceleration due to the Lorentz force, and qs and ms the charge and mass of
species s respectively. The mean electric and magnetic fields, E and B are determined from net charges and currents
generated due to the motion of the particles, and are governed by the Maxwell’s equations of electromagnetism. The
e↵ect of small-angle collisions, written on the right hand side of the above equation, is described by the nonlinear
Fokker-Planck operator (FPO) [1] as
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Here h� iis and h� i� jis are average increments per unit time due to the e↵ect of collisions governed by the inverse-
square force between individual particles. In general, the increments are determined either from a Landau integral
formulation or from the Rosenbluth potentials that themselves are computed by solving boundary value problems
involving the distribution function. This results in a nonlinear integro-di↵erential equation for the e↵ect of collisions
on the evolution of the distribution function. See equations (17)–(20) in [1] or Refs. [2, 3, 4] for details. We refer to
this specific system as the Rosenbluth (Rosenbluth/Landau) Fokker-Planck operator to avoid confusion.

In this paper we instead approximate the increments from self-collisions as h� iis = �⌫ss( i�ui,s) and h� i� jis =
2⌫ss

2
th,s�i j, where ⌫ss is the collision frequency, the primitive moments us and th,s =

p
Ts/ms are the mean velocity

and thermal speed of the particles, respectively. The full approximation, including cross-species collisions is given
in the next section. Clearly, this is a significant simplification. However, the essential features of the complete
system are still present: the equation is a nonlinear integro-di↵erential equation as the mean velocity us and the
thermal speed th,s are determined by moments of the distribution function; the e↵ect of both drag and di↵usion on
the particle distribution function is included, capturing pitch-angle scattering, for example. One of the weakness of
this simplification is in the use of a mean collision frequency independent of the particle velocity. In the full system
the e↵ective collision frequency is smaller for higher speed particles and goes like 1/ 3. It is possible to improve this
model by making the collision frequency a function of velocity, but the definitions of the coe�cients ui,s and 2

th,s must
be modified to preserve momentum and energy conservation. This deficiency means that in our simplified formulation
high energy tails in the distribution function are equally impacted by collisions as the low energy bulk, and this can
result in inaccurate physics in some situations.

The simplified FPO already illustrates the challenges in designing a robust, e�cient, and production quality nu-
merical method that works well with the discretization of the collisionless terms. Conservation in the presence of
both drag and di↵usion and finite velocity extents is challenging to maintain. Moments need to be self-consistently
determined with the discretization of the collision operator. Di↵usion terms need to be handled carefully to ensure
momentum and energy conservation. In fact, many features of the algorithm designed to handle these challenges
remain essentially unchanged for the full operator, except that now the increments need to be determined from elliptic
equations in velocity space. Solving for the Rosenbluth potentials adds additional di�culties that will be addressed in
a future work that builds on the scheme presented here.

Fokker-Planck operators arise in many fields of physics, besides the plasma case presented above. Hence, ver-
sions of the scheme presented here can be more broadly applied. For example, Fokker-Planck equations are used in
studying brownian motion, Ornstein-Uhlenbeck process, self-gravitating systems [5], modeling neuronal dynamics in
the brain [6] and describing economic systems via the distribution of money [7]. For a comprehensive overview of
the equation and its application see the text of Risken [8].

Our approach to discretize the Vlasov-Maxwell-Fokker-Planck operator is to use a version of the discontinuous
Galerkin (DG) scheme. Previously [9], we presented a nodal DG scheme to solve the collisionless system. This
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the appendix.

2. The continuous collision operator and its properties

The form of the Fokker-Planck operator we will consider here has the increments appearing in the Rosenbluth
form, Eq. (2), as

h� iis = �⌫ss( i � us,i) �
X

r,s

⌫sr( i � usr,i) (3)

and

h� i� jis = 2⌫ss
2
th,s�i j +

X

r,s

2⌫sr
2
th,sr�i j. (4)

Here ⌫sr is the collision frequency between particles of species s and r, and us and th,s =
p

Ts/ms are the mean
velocity and thermal speed of particles of species s respectively. The velocities usr and the thermal speeds th,sr =p

Tsr/ms are intermediate values that are determined to maintain conservation of total density, momentum and energy.
See below and also Green [23] for the analogous problem with the Bhatnagar-Gross-Krook (BGK) operator.

To compute the mean (drift) velocities and thermal speeds that appear in the above equations, we first define the
moments

Ms
0 = h1is (5)

Ms
1 = hvis (6)

Ms
2 = h 2is (7)

where the moment operator h'(v)is is defined as

h'(v)is =
Z 1

�1
'(v) fs(x,v, t) d3v. (8)

In terms of these moments the mean velocity and thermal speed in three velocity dimensions are determined from
Ms

1 = nsus and Ms
2 = nsu2

s + 3ns
2
th,s. For other velocity dimensions replace the 3 with d , the dimension of the

velocity space.
Even though Eq. (2) has the form of the Fokker-Planck equation, with the specific choice for the increments

Eq. (3) and Eq. (4) this operator is sometimes referred to, in plasma physics, by di↵erent names. For example, a
linear form of the operator, that did not conserve momentum, was presented by Lenard and Bernstein in [24] to study
Landau damping of plasma oscillations in the presence of collisions. The nonlinear and conservative form above was
presented first by Dougherty in [25]. Hence, in the plasma physics literature this operator is commonly referred to as
the Lenard-Bernstein operator or the Dougherty operator. In this paper we refer to the conservative operator as simply
the Fokker-Planck operator (FPO) as the form of the equation is the same as the generic Fokker-Planck equation.
Determining the increments in the operator using Rosenbluth potential does not change the form of the basic equation
and also, as mentioned in the introduction, most of the computational di�culties and solutions developed here carry
over to that case.

We next list the properties of the FPO that are important to preserve in a good numerical scheme. The most
important of these properties are the conservation of number density of each species, and the total, summed over
species, momentum and total energy. The corresponding conservation properties of the collisionless Vlasov-Maxwell
system were given in [9]. The conservation properties are summarized in the following propositions.

Proposition 1 (Number Density Conservation). The FPO conserves number density of each species:

@

@t
h1is = 0. (9)

4

the appendix.

2. The continuous collision operator and its properties

The form of the Fokker-Planck operator we will consider here has the increments appearing in the Rosenbluth
form, Eq. (2), as

h� iis = �⌫ss( i � us,i) �
X

r,s

⌫sr( i � usr,i) (3)

and

h� i� jis = 2⌫ss
2
th,s�i j +

X

r,s

2⌫sr
2
th,sr�i j. (4)

Here ⌫sr is the collision frequency between particles of species s and r, and us and th,s =
p

Ts/ms are the mean
velocity and thermal speed of particles of species s respectively. The velocities usr and the thermal speeds th,sr =p

Tsr/ms are intermediate values that are determined to maintain conservation of total density, momentum and energy.
See below and also Green [23] for the analogous problem with the Bhatnagar-Gross-Krook (BGK) operator.

To compute the mean (drift) velocities and thermal speeds that appear in the above equations, we first define the
moments

Ms
0 = h1is (5)

Ms
1 = hvis (6)

Ms
2 = h 2is (7)

where the moment operator h'(v)is is defined as

h'(v)is =
Z 1

�1
'(v) fs(x,v, t) d3v. (8)

In terms of these moments the mean velocity and thermal speed in three velocity dimensions are determined from
Ms

1 = nsus and Ms
2 = nsu2

s + 3ns
2
th,s. For other velocity dimensions replace the 3 with d , the dimension of the

velocity space.
Even though Eq. (2) has the form of the Fokker-Planck equation, with the specific choice for the increments

Eq. (3) and Eq. (4) this operator is sometimes referred to, in plasma physics, by di↵erent names. For example, a
linear form of the operator, that did not conserve momentum, was presented by Lenard and Bernstein in [24] to study
Landau damping of plasma oscillations in the presence of collisions. The nonlinear and conservative form above was
presented first by Dougherty in [25]. Hence, in the plasma physics literature this operator is commonly referred to as
the Lenard-Bernstein operator or the Dougherty operator. In this paper we refer to the conservative operator as simply
the Fokker-Planck operator (FPO) as the form of the equation is the same as the generic Fokker-Planck equation.
Determining the increments in the operator using Rosenbluth potential does not change the form of the basic equation
and also, as mentioned in the introduction, most of the computational di�culties and solutions developed here carry
over to that case.

We next list the properties of the FPO that are important to preserve in a good numerical scheme. The most
important of these properties are the conservation of number density of each species, and the total, summed over
species, momentum and total energy. The corresponding conservation properties of the collisionless Vlasov-Maxwell
system were given in [9]. The conservation properties are summarized in the following propositions.

Proposition 1 (Number Density Conservation). The FPO conserves number density of each species:

@

@t
h1is = 0. (9)

4

Full Fokker-Planck form

Lenard-Bernstein (Dougherty)



Collision Operator in Gkeyll

1. Introduction

The motion of charged particles in a plasma is due to self-consistent mean electromagnetic field and cumulative
e↵ects of fluctuating fields. The latter can be approximated e↵ectively as small-angle collisions. This approximation
is in contrast to the case of neutral particles that travel in straight lines between “hard-sphere” collisions. A fully
ionized plasma is described by Vlasov-Maxwell-Fokker-Planck (VM-FP) equation for the phase-space distribution
function, f (t, x,v), written as
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the appendix.

2. The continuous collision operator and its properties

The form of the Fokker-Planck operator we will consider here has the increments appearing in the Rosenbluth
form, Eq. (2), as

h� iis = �⌫ss( i � us,i) �
X

r,s

⌫sr( i � usr,i) (3)

and

h� i� jis = 2⌫ss
2
th,s�i j +

X

r,s

2⌫sr
2
th,sr�i j. (4)

Here ⌫sr is the collision frequency between particles of species s and r, and us and th,s =
p

Ts/ms are the mean
velocity and thermal speed of particles of species s respectively. The velocities usr and the thermal speeds th,sr =p

Tsr/ms are intermediate values that are determined to maintain conservation of total density, momentum and energy.
See below and also Green [23] for the analogous problem with the Bhatnagar-Gross-Krook (BGK) operator.

To compute the mean (drift) velocities and thermal speeds that appear in the above equations, we first define the
moments

Ms
0 = h1is (5)

Ms
1 = hvis (6)

Ms
2 = h 2is (7)

where the moment operator h'(v)is is defined as

h'(v)is =
Z 1

�1
'(v) fs(x,v, t) d3v. (8)

In terms of these moments the mean velocity and thermal speed in three velocity dimensions are determined from
Ms

1 = nsus and Ms
2 = nsu2

s + 3ns
2
th,s. For other velocity dimensions replace the 3 with d , the dimension of the

velocity space.
Even though Eq. (2) has the form of the Fokker-Planck equation, with the specific choice for the increments

Eq. (3) and Eq. (4) this operator is sometimes referred to, in plasma physics, by di↵erent names. For example, a
linear form of the operator, that did not conserve momentum, was presented by Lenard and Bernstein in [24] to study
Landau damping of plasma oscillations in the presence of collisions. The nonlinear and conservative form above was
presented first by Dougherty in [25]. Hence, in the plasma physics literature this operator is commonly referred to as
the Lenard-Bernstein operator or the Dougherty operator. In this paper we refer to the conservative operator as simply
the Fokker-Planck operator (FPO) as the form of the equation is the same as the generic Fokker-Planck equation.
Determining the increments in the operator using Rosenbluth potential does not change the form of the basic equation
and also, as mentioned in the introduction, most of the computational di�culties and solutions developed here carry
over to that case.

We next list the properties of the FPO that are important to preserve in a good numerical scheme. The most
important of these properties are the conservation of number density of each species, and the total, summed over
species, momentum and total energy. The corresponding conservation properties of the collisionless Vlasov-Maxwell
system were given in [9]. The conservation properties are summarized in the following propositions.

Proposition 1 (Number Density Conservation). The FPO conserves number density of each species:

@

@t
h1is = 0. (9)

4

the appendix.

2. The continuous collision operator and its properties

The form of the Fokker-Planck operator we will consider here has the increments appearing in the Rosenbluth
form, Eq. (2), as

h� iis = �⌫ss( i � us,i) �
X

r,s

⌫sr( i � usr,i) (3)

and

h� i� jis = 2⌫ss
2
th,s�i j +

X

r,s

2⌫sr
2
th,sr�i j. (4)

Here ⌫sr is the collision frequency between particles of species s and r, and us and th,s =
p

Ts/ms are the mean
velocity and thermal speed of particles of species s respectively. The velocities usr and the thermal speeds th,sr =p

Tsr/ms are intermediate values that are determined to maintain conservation of total density, momentum and energy.
See below and also Green [23] for the analogous problem with the Bhatnagar-Gross-Krook (BGK) operator.

To compute the mean (drift) velocities and thermal speeds that appear in the above equations, we first define the
moments

Ms
0 = h1is (5)

Ms
1 = hvis (6)

Ms
2 = h 2is (7)

where the moment operator h'(v)is is defined as

h'(v)is =
Z 1

�1
'(v) fs(x,v, t) d3v. (8)

In terms of these moments the mean velocity and thermal speed in three velocity dimensions are determined from
Ms

1 = nsus and Ms
2 = nsu2

s + 3ns
2
th,s. For other velocity dimensions replace the 3 with d , the dimension of the

velocity space.
Even though Eq. (2) has the form of the Fokker-Planck equation, with the specific choice for the increments

Eq. (3) and Eq. (4) this operator is sometimes referred to, in plasma physics, by di↵erent names. For example, a
linear form of the operator, that did not conserve momentum, was presented by Lenard and Bernstein in [24] to study
Landau damping of plasma oscillations in the presence of collisions. The nonlinear and conservative form above was
presented first by Dougherty in [25]. Hence, in the plasma physics literature this operator is commonly referred to as
the Lenard-Bernstein operator or the Dougherty operator. In this paper we refer to the conservative operator as simply
the Fokker-Planck operator (FPO) as the form of the equation is the same as the generic Fokker-Planck equation.
Determining the increments in the operator using Rosenbluth potential does not change the form of the basic equation
and also, as mentioned in the introduction, most of the computational di�culties and solutions developed here carry
over to that case.

We next list the properties of the FPO that are important to preserve in a good numerical scheme. The most
important of these properties are the conservation of number density of each species, and the total, summed over
species, momentum and total energy. The corresponding conservation properties of the collisionless Vlasov-Maxwell
system were given in [9]. The conservation properties are summarized in the following propositions.

Proposition 1 (Number Density Conservation). The FPO conserves number density of each species:

@

@t
h1is = 0. (9)

4

Conserves
• Number density
• Momentum
• Energy

Satisfies
• Discrete H-Theorem
• Maximum entropy is numerical Maxwellian

Lenard-Bernstein (Dougherty)

Figure 3: Initial (top-left), relaxed (top-right) distribution function from bi-Maxwellian relaxation test. Conservation (lower left) of total energy
(blue) and momentum (magenta, red) is at machine precision. The entropy (lower-right) increases rapidly and then remains constant once the
discrete Maxwellian is obtained.
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Magnetic Pumping [Lichko et al ApJL (2017)]

Figure 8: Time evolution of the magnetic field (left) from the magnetic pumping problem. As the antenna currents ramp up, an oscillating field is
created that then transfers energy, via pitch-angle scattering, to the plasma. The top right plots shows the time-history of the field in the middle
of the domain and the bottom right figure shows the integrated thermal energy history with various collisionalities. As the collision frequency
increases, magnetic pumping is more e↵ective in heating the plasma.

conservation of kinetic energy, this should result in a corresponding decrease in the parallel velocity. However,
collisions can provide a route to “pitch angle scatter” the energy into the parallel direction, leading to an overall
heating of the plasma. This mechanism was originally proposed by Spitzer in the early days of fusion research, and
investigated extensively [40, 41]. Recently, this same mechanism was investigated as a potential source of particle
heating in the solar wind [42]. We use a similar setup as [42] to benchmark our algorithms. The study in [42] used a
full Coulomb operator evolved with a Monte-Carlo method implemented in particle-in-cell (PIC) code. Here, we used
the simplified form of the FPO. Even though this is simpler than the Coulomb operator it contains enough physics to
study the mechanism of magnetic pumping, and demonstrate that our algorithm works robustly in a complex plasma
problem.

The domain is 4D with one spatial dimension but three velocity dimensions (1X3V) and has extents [0, 200⇡
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The current is turned on slowly over one pumping period using !ramp = !pump. This ramping phase ensures that the
antenna is “turned on” slowly and hence does not excite unwanted waves in the plasma. Further, we need to ensure
that the plasma density is low enough that the electromagnetic waves are not “trapped” in the density holes that are
created around the antenna.

The tests shown here use !pump = 0.1⌦ce, x1 = 50⇡
p

2⇢e, x2 = 150⇡
p

2⇢e, �J = 200⇡
p

2⇢e/256 and ⌦ce =
0.25!pe. We employ a hydrogen mass ratio mi/me = 1836 and initialize electron and ion species as Maxwellians with
zero mean flow, number density n ⇢3

e = 1.25 ⇥ 10�6 and thermal speed 2
th,e/c

2 = � 2
Ae/[2c2(1 + ⌧)]. The temperature

ratio is ⌧ = Ti/Te = 1, the ratio between electron Alfvén and light speeds is Ae/c = 0.25, and the ratio between plasma
and magnetic pressures is � = 0.01. With these quantities, the normalized background magnetic field amplitude is
✏0!peB0/(en) = Ae/c, and we use the normalized driving current density amplitude J0/(enc) = Ae/(2c).

Figure 8 shows the evolution of the magnetic field and thermal energy. As the antenna current ramps up an
oscillating magnetic field structure is created. The amplitude of oscillations are about 15% of the background. This
oscillating energy is then transferred to parallel heating, via pitch angle scattering. This heating is shown in the bottom
right panel of the figure which shows that as the collision frequency increases the plasma heating-rate also increases.

Figure 9 show the heating rate as a function of normalized collision frequency. This rate is measured by computing
the slope of the time-averaged integrated thermal energy. Interestingly, this figure shows that the rate of heating is not
unbounded, but in fact eventually saturates, then decreases and eventually becomes insensitive to further increases in
collisionality. This trend was also observed, but in a di↵erent parameter regime and using Coulomb collisions, in [42].
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Vlasov-Poisson [Howes, Klein, & Li (2017)]

8 G. G. Howes, K. G. Klein, and T. C. Li

by parts in velocity to yield the result
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∫ L/2

−L/2
dx

∂φ
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−∞
dv qsvfs = −

∫ L/2

−L/2
dx jsE (3.6)

where the current density for species s is given by js =
∫

dv qsvfs.
Since the total current density j =

∑

s js, we may integrate (3.3) over space and
combine it with (3.6) summed over species to obtain an expression for the conservation
of energy in a 1D-1V electrostatic plasma,
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Therefore, the conserved Vlasov-Poisson energy W for electrostatic fluctuations in a
collisionless, unmagnetized plasma is given by
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∫ L/2

−L/2
dx
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8π
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We also define the electrostatic field energy electrostatic field energy

Wφ ≡
∫ L/2

−L/2
dx

E2

8π
, (3.9)

such that the total conserved Vlasov-Poisson energy for a single ion species plasma is
given by

W = Wφ +Wi +We. (3.10)

3.2. Energy Transfer via Collisionless Wave-Particle Interactions

To illuminate the secular transfer of energy between the electrostatic field and the parti-
cles via resonant wave-particle interactions, it is instructive to examine more closely the
different contributions to the change in the particle energy, Ws. As (3.7) mandates, in
the Vlasov-Poisson system, the energy gain by the particles must be equal to the energy
lost from the electrostatic field,

∑

s ∂Ws/∂t = −∂Wφ/∂t. We may express the rate of
energy exchange (gain or loss) for species s by

∂Ws

∂t
=

∫

dx

∫

dv
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2
msv

2 ∂fs
∂t

(3.11)

To progress further, we decompose the distribution function into an equilibrium and
perturbed component,

fs(x, v, t) = fs0(v) + δfs(x, v, t), (3.12)

where the equilibrium distribution function fs0(v) is assumed to be uniform in space and
static in time. We also make the additional assumption that fs0(v) is an even function
of velocity so that the equilibrium has no bulk plasma flow (first moment), but it need
not be a Maxwellian.
We emphasize here that we have made no ordering assumptions on the magnitude

of δfs relative to fs0, so the nonlinear evolution of the distribution function described
by this form is not limited in any way. The term δfs contains the entire (nonlinear)
perturbation, not just the lowest order (linear) perturbation. Of course, the physical
limitation

fs(x, v, t) = fs0(v) + δfs(x, v, t) ! 0 (3.13)
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must always be satisfied, so this means that δfs(x, v, t) ! −fs0(v) for all values of
velocity v. Practically, this does lead to constraints on the allowable timestep in numerical
simulations to maintain a physically realizable fs(x, v, t) ! 0 everywhere.
Substituting (3.12) into the Vlasov equation (3.1), we obtain

∂δfs
∂t

= −v
∂δfs
∂x

+
qs
ms

∂φ

∂x

∂fs0
∂v

+
qs
ms

∂φ

∂x

∂δfs
∂v

. (3.14)

In this form, on the right-hand side, the first term is the (linear) ballistic term, the second
term is the linear wave-particle interaction term, and the third term is the nonlinear
wave-particle interaction term. Next, we substitute (3.14) into (3.11), yielding
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(3.15)

We now evaluate the influence of each of these terms on the evolution of the microscopic
kinetic energy, Ws.
The first term, the ballistic term, may be written as a perfect differential in x, thereby

yielding a value of zero upon integration over x for periodic or infinite boundaries. The
second term, the linear wave-particle interaction term, may be written in the form

∫

dx
∂

∂x

{

qsφ

2

[
∫

dv v2
∂fs0
∂v

]}

= 0. (3.16)

Since we have chosen fs0 to be an even function of v, then its derivative ∂fs0/∂v is an
odd function, so the integrand of the velocity integral is an odd function evaluated over
an even interval, yielding zero. In addition, because fs0 is not a function of x, everything
in the braces is also a perfect differential, so this term will vanish upon integration over
x for any choice of fs0, not just even functions of v.
For the third term, the nonlinear wave-particle interaction term, we may integrate by

parts in velocity to yield the final result for the rate of change of microscopic kinetic
energy for species s,
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= −
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dx jsE (3.17)

Therefore, the secular change of particle energy in the Vlasov-Poisson system occurs via
the nonlinear wave-particle interaction term in (3.14). Furthermore, the perturbations
in the distribution function arising from the collisionless transfer of energy from fields to
particles are generated by this term, making it possible to separate the fluctuations in
velocity space due to resonant wave-particle interactions from the (generally larger ampli-
tude) fluctuations generated by the ballistic term and the linear wave-particle interaction
term.
Note that linearization of the kinetic system leads to dropping the nonlinear wave-

particle interaction term, the third term on the right-hand side of (3.15). But this term
is necessary to describe the change in the energy of the particles Ws. So, although a
linearized system will describe the collisionless Landau damping of the electrostatic waves
of the Vlasov-Poisson system (Landau 1946), energy is not conserved in a linearized
system. The nonlinear wave-particle interaction term must be retained in order to achieve
energy conservation.
In summary, using measurements of the fluctuations in the particle distribution func-

tion δfs(x, v, t) and the electric field E(x, t), we may calculate the rate of transfer of
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must always be satisfied, so this means that δfs(x, v, t) ! −fs0(v) for all values of
velocity v. Practically, this does lead to constraints on the allowable timestep in numerical
simulations to maintain a physically realizable fs(x, v, t) ! 0 everywhere.
Substituting (3.12) into the Vlasov equation (3.1), we obtain

∂δfs
∂t
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∂δfs
∂x

+
qs
ms

∂φ

∂x

∂fs0
∂v

+
qs
ms

∂φ

∂x

∂δfs
∂v

. (3.14)

In this form, on the right-hand side, the first term is the (linear) ballistic term, the second
term is the linear wave-particle interaction term, and the third term is the nonlinear
wave-particle interaction term. Next, we substitute (3.14) into (3.11), yielding

∂Ws

∂t
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dx

∫

dv
1

2
msv

2
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∂x
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qs
ms

∂φ

∂x

∂fs0
∂v

+
qs
ms

∂φ

∂x

∂δfs
∂v

]

(3.15)

We now evaluate the influence of each of these terms on the evolution of the microscopic
kinetic energy, Ws.
The first term, the ballistic term, may be written as a perfect differential in x, thereby

yielding a value of zero upon integration over x for periodic or infinite boundaries. The
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dx
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qsφ

2
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∂v
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= 0. (3.16)

Since we have chosen fs0 to be an even function of v, then its derivative ∂fs0/∂v is an
odd function, so the integrand of the velocity integral is an odd function evaluated over
an even interval, yielding zero. In addition, because fs0 is not a function of x, everything
in the braces is also a perfect differential, so this term will vanish upon integration over
x for any choice of fs0, not just even functions of v.
For the third term, the nonlinear wave-particle interaction term, we may integrate by

parts in velocity to yield the final result for the rate of change of microscopic kinetic
energy for species s,

∂Ws
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= −
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∫

dv qsvδfs =

∫

dx jsE (3.17)

Therefore, the secular change of particle energy in the Vlasov-Poisson system occurs via
the nonlinear wave-particle interaction term in (3.14). Furthermore, the perturbations
in the distribution function arising from the collisionless transfer of energy from fields to
particles are generated by this term, making it possible to separate the fluctuations in
velocity space due to resonant wave-particle interactions from the (generally larger ampli-
tude) fluctuations generated by the ballistic term and the linear wave-particle interaction
term.
Note that linearization of the kinetic system leads to dropping the nonlinear wave-

particle interaction term, the third term on the right-hand side of (3.15). But this term
is necessary to describe the change in the energy of the particles Ws. So, although a
linearized system will describe the collisionless Landau damping of the electrostatic waves
of the Vlasov-Poisson system (Landau 1946), energy is not conserved in a linearized
system. The nonlinear wave-particle interaction term must be retained in order to achieve
energy conservation.
In summary, using measurements of the fluctuations in the particle distribution func-

tion δfs(x, v, t) and the electric field E(x, t), we may calculate the rate of transfer of
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functions. This theoretical insight will be used to devise a novel analysis strategy using
correlated field and particle measurements to identify definitively the action of collision-
less wave-particle interactions in heliospheric plasmas using either spacecraft measure-
ments or nonlinear kinetic numerical simulations.
Here we review the properties of electrostatic fluctuations in a collisionless, unmag-

netized plasma that are relevant to the aim of identifying the secular energy transfer
via collisionless wave-particle interactions. For simplicity in the analytical calculations
presented here, we consider a strictly one-dimensional (1D-1V) kinetic system, but do
note that the physics of electrostatic fluctuations (∇ × E = 0) remains unchanged in
a realistic three-dimensional plasma. The dynamics of the electrostatic fluctuations in
a collisionless 1D-1V plasma is governed by the Vlasov-Poisson equations, where the
Vlasov equation determines the collisionless evolution of the distribution function for
each species s, fs(x, v, t), given by

∂fs
∂t

+ v
∂fs
∂x

−
qs
ms

∂φ

∂x

∂fs
∂v

= 0 (3.1)

and the Poisson equation yields the scalar electrostatic potential, φ(x, t),

∂2φ

∂x2
= −4π

∑

s

∫ +∞

−∞
dv qsfs. (3.2)

Physically, the second term of the Vlasov equation describes the ballistic behavior of
the particles in the collisionless plasma and the third term governs the response of the
particles to the electric field E = −∂φ/∂x. Here we denote these terms the ballistic term
and the wave-particle interaction term, respectively.

3.1. Energy Conservation

To derive the expression for the conserved energy of electrostatic fluctuations in an
unmagnetized plasma, we begin with the electrostatic analogue of Poynting’s theorem.
Beginning with the 1D electrostatic limit of the Ampere-Maxwell Law, ∂E/∂t = −4πj,
we multiply by E to obtain the rate of change of electrostatic field energy density,

∂

∂t

(

E2

8π

)

= −jE (3.3)

Next, we multiply the Vlasov equation (3.1) for species s by msv2/2 and integrate
over velocity and position. Exchanging the order of differentiation and integration of the
independent variables, we may obtain the form

∂

∂t

∫

dx

∫

dv
1

2
msv

2fs +

∫

dx
∂

∂x

[
∫

dv
1

2
msv

3fs

]

−
∫

dx
∂φ

∂x

∫

dv

(

qsv2

2

)

∂fs
∂v

= 0

(3.4)
The first term of this equation represents the rate of change of the microscopic kinetic
energy of species s

Ws ≡
∫ L/2

−L/2
dx

∫ ∞

−∞
dv

1

2
msv

2fs. (3.5)

The second term, associated with the ballistic behavior of particles, is a perfect differential
in x, yielding zero for either periodic boundary conditions, fs(x = −L/2, v) = fs(x =
L/2, v), or boundary conditions at infinity, limL→∞ fs(x = ±L/2, v) = 0. Physically, the
ballistic term can only transport energy from one position to another, so when integrated
over the volume yields a net change of zero for Ws. The third term may be integrated
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by parts in velocity to yield the result

∂Ws

∂t
=

∫ L/2

−L/2
dx

∂φ

∂x

∫ ∞

−∞
dv qsvfs = −

∫ L/2

−L/2
dx jsE (3.6)

where the current density for species s is given by js =
∫

dv qsvfs.
Since the total current density j =

∑

s js, we may integrate (3.3) over space and
combine it with (3.6) summed over species to obtain an expression for the conservation
of energy in a 1D-1V electrostatic plasma,

∂

∂t

∫ L/2

−L/2
dx

(

E2

8π

)

+
∂

∂t

∑

s

∫ L/2

−L/2
dx

∫ ∞

−∞
dv

1

2
msv

2fs = 0 (3.7)

Therefore, the conserved Vlasov-Poisson energy W for electrostatic fluctuations in a
collisionless, unmagnetized plasma is given by

W =

∫ L/2

−L/2
dx

E2

8π
+
∑

s

∫ L/2

−L/2
dx

∫ ∞

−∞
dv

1

2
msv

2fs. (3.8)

We also define the electrostatic field energy electrostatic field energy

Wφ ≡
∫ L/2

−L/2
dx

E2

8π
, (3.9)

such that the total conserved Vlasov-Poisson energy for a single ion species plasma is
given by

W = Wφ +Wi +We. (3.10)

3.2. Energy Transfer via Collisionless Wave-Particle Interactions

To illuminate the secular transfer of energy between the electrostatic field and the parti-
cles via resonant wave-particle interactions, it is instructive to examine more closely the
different contributions to the change in the particle energy, Ws. As (3.7) mandates, in
the Vlasov-Poisson system, the energy gain by the particles must be equal to the energy
lost from the electrostatic field,

∑

s ∂Ws/∂t = −∂Wφ/∂t. We may express the rate of
energy exchange (gain or loss) for species s by

∂Ws

∂t
=

∫

dx

∫

dv
1

2
msv

2 ∂fs
∂t

(3.11)

To progress further, we decompose the distribution function into an equilibrium and
perturbed component,

fs(x, v, t) = fs0(v) + δfs(x, v, t), (3.12)

where the equilibrium distribution function fs0(v) is assumed to be uniform in space and
static in time. We also make the additional assumption that fs0(v) is an even function
of velocity so that the equilibrium has no bulk plasma flow (first moment), but it need
not be a Maxwellian.
We emphasize here that we have made no ordering assumptions on the magnitude

of δfs relative to fs0, so the nonlinear evolution of the distribution function described
by this form is not limited in any way. The term δfs contains the entire (nonlinear)
perturbation, not just the lowest order (linear) perturbation. Of course, the physical
limitation

fs(x, v, t) = fs0(v) + δfs(x, v, t) ! 0 (3.13)

Separation useful in some 
cases but not necessary

Multiply by mv2/2 and integrate to obtain the energy equation
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by parts in velocity to yield the result

∂Ws

∂t
=

∫ L/2

−L/2
dx

∂φ

∂x

∫ ∞

−∞
dv qsvfs = −

∫ L/2

−L/2
dx jsE (3.6)

where the current density for species s is given by js =
∫

dv qsvfs.
Since the total current density j =

∑

s js, we may integrate (3.3) over space and
combine it with (3.6) summed over species to obtain an expression for the conservation
of energy in a 1D-1V electrostatic plasma,

∂

∂t

∫ L/2

−L/2
dx

(

E2

8π

)

+
∂

∂t

∑

s

∫ L/2

−L/2
dx

∫ ∞

−∞
dv

1

2
msv

2fs = 0 (3.7)

Therefore, the conserved Vlasov-Poisson energy W for electrostatic fluctuations in a
collisionless, unmagnetized plasma is given by

W =

∫ L/2

−L/2
dx

E2

8π
+
∑

s

∫ L/2

−L/2
dx

∫ ∞

−∞
dv

1

2
msv

2fs. (3.8)

We also define the electrostatic field energy electrostatic field energy

Wφ ≡
∫ L/2

−L/2
dx

E2

8π
, (3.9)

such that the total conserved Vlasov-Poisson energy for a single ion species plasma is
given by

W = Wφ +Wi +We. (3.10)

3.2. Energy Transfer via Collisionless Wave-Particle Interactions

To illuminate the secular transfer of energy between the electrostatic field and the parti-
cles via resonant wave-particle interactions, it is instructive to examine more closely the
different contributions to the change in the particle energy, Ws. As (3.7) mandates, in
the Vlasov-Poisson system, the energy gain by the particles must be equal to the energy
lost from the electrostatic field,

∑

s ∂Ws/∂t = −∂Wφ/∂t. We may express the rate of
energy exchange (gain or loss) for species s by

∂Ws

∂t
=

∫

dx

∫

dv
1

2
msv

2 ∂fs
∂t

(3.11)

To progress further, we decompose the distribution function into an equilibrium and
perturbed component,

fs(x, v, t) = fs0(v) + δfs(x, v, t), (3.12)

where the equilibrium distribution function fs0(v) is assumed to be uniform in space and
static in time. We also make the additional assumption that fs0(v) is an even function
of velocity so that the equilibrium has no bulk plasma flow (first moment), but it need
not be a Maxwellian.
We emphasize here that we have made no ordering assumptions on the magnitude

of δfs relative to fs0, so the nonlinear evolution of the distribution function described
by this form is not limited in any way. The term δfs contains the entire (nonlinear)
perturbation, not just the lowest order (linear) perturbation. Of course, the physical
limitation

fs(x, v, t) = fs0(v) + δfs(x, v, t) ! 0 (3.13)
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must always be satisfied, so this means that δfs(x, v, t) ! −fs0(v) for all values of
velocity v. Practically, this does lead to constraints on the allowable timestep in numerical
simulations to maintain a physically realizable fs(x, v, t) ! 0 everywhere.
Substituting (3.12) into the Vlasov equation (3.1), we obtain

∂δfs
∂t

= −v
∂δfs
∂x

+
qs
ms

∂φ

∂x

∂fs0
∂v

+
qs
ms

∂φ

∂x

∂δfs
∂v

. (3.14)

In this form, on the right-hand side, the first term is the (linear) ballistic term, the second
term is the linear wave-particle interaction term, and the third term is the nonlinear
wave-particle interaction term. Next, we substitute (3.14) into (3.11), yielding

∂Ws

∂t
=

∫

dx

∫

dv
1

2
msv

2

[

−v
∂δfs
∂x

+
qs
ms

∂φ

∂x

∂fs0
∂v

+
qs
ms

∂φ

∂x

∂δfs
∂v

]

(3.15)

We now evaluate the influence of each of these terms on the evolution of the microscopic
kinetic energy, Ws.
The first term, the ballistic term, may be written as a perfect differential in x, thereby

yielding a value of zero upon integration over x for periodic or infinite boundaries. The
second term, the linear wave-particle interaction term, may be written in the form

∫

dx
∂

∂x

{

qsφ

2

[
∫

dv v2
∂fs0
∂v

]}

= 0. (3.16)

Since we have chosen fs0 to be an even function of v, then its derivative ∂fs0/∂v is an
odd function, so the integrand of the velocity integral is an odd function evaluated over
an even interval, yielding zero. In addition, because fs0 is not a function of x, everything
in the braces is also a perfect differential, so this term will vanish upon integration over
x for any choice of fs0, not just even functions of v.
For the third term, the nonlinear wave-particle interaction term, we may integrate by

parts in velocity to yield the final result for the rate of change of microscopic kinetic
energy for species s,

∂Ws

∂t
= −

∫

dx
∂φ

∂x

∫

dv qsvδfs =

∫

dx jsE (3.17)

Therefore, the secular change of particle energy in the Vlasov-Poisson system occurs via
the nonlinear wave-particle interaction term in (3.14). Furthermore, the perturbations
in the distribution function arising from the collisionless transfer of energy from fields to
particles are generated by this term, making it possible to separate the fluctuations in
velocity space due to resonant wave-particle interactions from the (generally larger ampli-
tude) fluctuations generated by the ballistic term and the linear wave-particle interaction
term.
Note that linearization of the kinetic system leads to dropping the nonlinear wave-

particle interaction term, the third term on the right-hand side of (3.15). But this term
is necessary to describe the change in the energy of the particles Ws. So, although a
linearized system will describe the collisionless Landau damping of the electrostatic waves
of the Vlasov-Poisson system (Landau 1946), energy is not conserved in a linearized
system. The nonlinear wave-particle interaction term must be retained in order to achieve
energy conservation.
In summary, using measurements of the fluctuations in the particle distribution func-

tion δfs(x, v, t) and the electric field E(x, t), we may calculate the rate of transfer of
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must always be satisfied, so this means that δfs(x, v, t) ! −fs0(v) for all values of
velocity v. Practically, this does lead to constraints on the allowable timestep in numerical
simulations to maintain a physically realizable fs(x, v, t) ! 0 everywhere.
Substituting (3.12) into the Vlasov equation (3.1), we obtain

∂δfs
∂t
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∂δfs
∂x

+
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∂φ
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+
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∂v

. (3.14)

In this form, on the right-hand side, the first term is the (linear) ballistic term, the second
term is the linear wave-particle interaction term, and the third term is the nonlinear
wave-particle interaction term. Next, we substitute (3.14) into (3.11), yielding

∂Ws
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=

∫
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dv
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2
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2

[

−v
∂δfs
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+
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+
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∂φ
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]

(3.15)

We now evaluate the influence of each of these terms on the evolution of the microscopic
kinetic energy, Ws.
The first term, the ballistic term, may be written as a perfect differential in x, thereby

yielding a value of zero upon integration over x for periodic or infinite boundaries. The
second term, the linear wave-particle interaction term, may be written in the form

∫

dx
∂

∂x

{

qsφ

2

[
∫

dv v2
∂fs0
∂v

]}

= 0. (3.16)

Since we have chosen fs0 to be an even function of v, then its derivative ∂fs0/∂v is an
odd function, so the integrand of the velocity integral is an odd function evaluated over
an even interval, yielding zero. In addition, because fs0 is not a function of x, everything
in the braces is also a perfect differential, so this term will vanish upon integration over
x for any choice of fs0, not just even functions of v.
For the third term, the nonlinear wave-particle interaction term, we may integrate by

parts in velocity to yield the final result for the rate of change of microscopic kinetic
energy for species s,

∂Ws

∂t
= −

∫

dx
∂φ

∂x

∫

dv qsvδfs =

∫

dx jsE (3.17)

Therefore, the secular change of particle energy in the Vlasov-Poisson system occurs via
the nonlinear wave-particle interaction term in (3.14). Furthermore, the perturbations
in the distribution function arising from the collisionless transfer of energy from fields to
particles are generated by this term, making it possible to separate the fluctuations in
velocity space due to resonant wave-particle interactions from the (generally larger ampli-
tude) fluctuations generated by the ballistic term and the linear wave-particle interaction
term.
Note that linearization of the kinetic system leads to dropping the nonlinear wave-

particle interaction term, the third term on the right-hand side of (3.15). But this term
is necessary to describe the change in the energy of the particles Ws. So, although a
linearized system will describe the collisionless Landau damping of the electrostatic waves
of the Vlasov-Poisson system (Landau 1946), energy is not conserved in a linearized
system. The nonlinear wave-particle interaction term must be retained in order to achieve
energy conservation.
In summary, using measurements of the fluctuations in the particle distribution func-

tion δfs(x, v, t) and the electric field E(x, t), we may calculate the rate of transfer of
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functions. This theoretical insight will be used to devise a novel analysis strategy using
correlated field and particle measurements to identify definitively the action of collision-
less wave-particle interactions in heliospheric plasmas using either spacecraft measure-
ments or nonlinear kinetic numerical simulations.
Here we review the properties of electrostatic fluctuations in a collisionless, unmag-

netized plasma that are relevant to the aim of identifying the secular energy transfer
via collisionless wave-particle interactions. For simplicity in the analytical calculations
presented here, we consider a strictly one-dimensional (1D-1V) kinetic system, but do
note that the physics of electrostatic fluctuations (∇ × E = 0) remains unchanged in
a realistic three-dimensional plasma. The dynamics of the electrostatic fluctuations in
a collisionless 1D-1V plasma is governed by the Vlasov-Poisson equations, where the
Vlasov equation determines the collisionless evolution of the distribution function for
each species s, fs(x, v, t), given by

∂fs
∂t

+ v
∂fs
∂x

−
qs
ms

∂φ

∂x

∂fs
∂v

= 0 (3.1)

and the Poisson equation yields the scalar electrostatic potential, φ(x, t),

∂2φ

∂x2
= −4π

∑

s

∫ +∞

−∞
dv qsfs. (3.2)

Physically, the second term of the Vlasov equation describes the ballistic behavior of
the particles in the collisionless plasma and the third term governs the response of the
particles to the electric field E = −∂φ/∂x. Here we denote these terms the ballistic term
and the wave-particle interaction term, respectively.

3.1. Energy Conservation

To derive the expression for the conserved energy of electrostatic fluctuations in an
unmagnetized plasma, we begin with the electrostatic analogue of Poynting’s theorem.
Beginning with the 1D electrostatic limit of the Ampere-Maxwell Law, ∂E/∂t = −4πj,
we multiply by E to obtain the rate of change of electrostatic field energy density,

∂

∂t

(

E2

8π

)

= −jE (3.3)

Next, we multiply the Vlasov equation (3.1) for species s by msv2/2 and integrate
over velocity and position. Exchanging the order of differentiation and integration of the
independent variables, we may obtain the form

∂

∂t

∫

dx

∫

dv
1

2
msv

2fs +

∫

dx
∂

∂x

[
∫

dv
1

2
msv

3fs

]

−
∫

dx
∂φ

∂x

∫

dv

(

qsv2

2

)

∂fs
∂v

= 0

(3.4)
The first term of this equation represents the rate of change of the microscopic kinetic
energy of species s

Ws ≡
∫ L/2

−L/2
dx

∫ ∞

−∞
dv

1

2
msv

2fs. (3.5)

The second term, associated with the ballistic behavior of particles, is a perfect differential
in x, yielding zero for either periodic boundary conditions, fs(x = −L/2, v) = fs(x =
L/2, v), or boundary conditions at infinity, limL→∞ fs(x = ±L/2, v) = 0. Physically, the
ballistic term can only transport energy from one position to another, so when integrated
over the volume yields a net change of zero for Ws. The third term may be integrated
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by parts in velocity to yield the result

∂Ws

∂t
=

∫ L/2

−L/2
dx

∂φ

∂x

∫ ∞

−∞
dv qsvfs = −

∫ L/2

−L/2
dx jsE (3.6)

where the current density for species s is given by js =
∫

dv qsvfs.
Since the total current density j =

∑

s js, we may integrate (3.3) over space and
combine it with (3.6) summed over species to obtain an expression for the conservation
of energy in a 1D-1V electrostatic plasma,

∂

∂t

∫ L/2

−L/2
dx

(

E2

8π

)

+
∂

∂t

∑

s

∫ L/2

−L/2
dx

∫ ∞

−∞
dv

1

2
msv

2fs = 0 (3.7)

Therefore, the conserved Vlasov-Poisson energy W for electrostatic fluctuations in a
collisionless, unmagnetized plasma is given by

W =

∫ L/2

−L/2
dx

E2

8π
+
∑

s

∫ L/2

−L/2
dx

∫ ∞

−∞
dv

1

2
msv

2fs. (3.8)

We also define the electrostatic field energy electrostatic field energy

Wφ ≡
∫ L/2

−L/2
dx

E2

8π
, (3.9)

such that the total conserved Vlasov-Poisson energy for a single ion species plasma is
given by

W = Wφ +Wi +We. (3.10)

3.2. Energy Transfer via Collisionless Wave-Particle Interactions

To illuminate the secular transfer of energy between the electrostatic field and the parti-
cles via resonant wave-particle interactions, it is instructive to examine more closely the
different contributions to the change in the particle energy, Ws. As (3.7) mandates, in
the Vlasov-Poisson system, the energy gain by the particles must be equal to the energy
lost from the electrostatic field,

∑

s ∂Ws/∂t = −∂Wφ/∂t. We may express the rate of
energy exchange (gain or loss) for species s by

∂Ws

∂t
=

∫

dx

∫

dv
1

2
msv

2 ∂fs
∂t

(3.11)

To progress further, we decompose the distribution function into an equilibrium and
perturbed component,

fs(x, v, t) = fs0(v) + δfs(x, v, t), (3.12)

where the equilibrium distribution function fs0(v) is assumed to be uniform in space and
static in time. We also make the additional assumption that fs0(v) is an even function
of velocity so that the equilibrium has no bulk plasma flow (first moment), but it need
not be a Maxwellian.
We emphasize here that we have made no ordering assumptions on the magnitude

of δfs relative to fs0, so the nonlinear evolution of the distribution function described
by this form is not limited in any way. The term δfs contains the entire (nonlinear)
perturbation, not just the lowest order (linear) perturbation. Of course, the physical
limitation

fs(x, v, t) = fs0(v) + δfs(x, v, t) ! 0 (3.13)
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by parts in velocity to yield the result

∂Ws

∂t
=

∫ L/2

−L/2
dx

∂φ

∂x

∫ ∞

−∞
dv qsvfs = −

∫ L/2

−L/2
dx jsE (3.6)

where the current density for species s is given by js =
∫

dv qsvfs.
Since the total current density j =

∑

s js, we may integrate (3.3) over space and
combine it with (3.6) summed over species to obtain an expression for the conservation
of energy in a 1D-1V electrostatic plasma,

∂

∂t

∫ L/2

−L/2
dx

(

E2

8π

)

+
∂

∂t

∑

s

∫ L/2

−L/2
dx

∫ ∞

−∞
dv

1

2
msv

2fs = 0 (3.7)

Therefore, the conserved Vlasov-Poisson energy W for electrostatic fluctuations in a
collisionless, unmagnetized plasma is given by

W =

∫ L/2

−L/2
dx

E2

8π
+
∑

s

∫ L/2

−L/2
dx

∫ ∞

−∞
dv

1

2
msv

2fs. (3.8)

We also define the electrostatic field energy electrostatic field energy

Wφ ≡
∫ L/2

−L/2
dx

E2

8π
, (3.9)

such that the total conserved Vlasov-Poisson energy for a single ion species plasma is
given by

W = Wφ +Wi +We. (3.10)

3.2. Energy Transfer via Collisionless Wave-Particle Interactions

To illuminate the secular transfer of energy between the electrostatic field and the parti-
cles via resonant wave-particle interactions, it is instructive to examine more closely the
different contributions to the change in the particle energy, Ws. As (3.7) mandates, in
the Vlasov-Poisson system, the energy gain by the particles must be equal to the energy
lost from the electrostatic field,

∑

s ∂Ws/∂t = −∂Wφ/∂t. We may express the rate of
energy exchange (gain or loss) for species s by

∂Ws

∂t
=

∫

dx

∫

dv
1

2
msv

2 ∂fs
∂t

(3.11)

To progress further, we decompose the distribution function into an equilibrium and
perturbed component,

fs(x, v, t) = fs0(v) + δfs(x, v, t), (3.12)

where the equilibrium distribution function fs0(v) is assumed to be uniform in space and
static in time. We also make the additional assumption that fs0(v) is an even function
of velocity so that the equilibrium has no bulk plasma flow (first moment), but it need
not be a Maxwellian.
We emphasize here that we have made no ordering assumptions on the magnitude

of δfs relative to fs0, so the nonlinear evolution of the distribution function described
by this form is not limited in any way. The term δfs contains the entire (nonlinear)
perturbation, not just the lowest order (linear) perturbation. Of course, the physical
limitation

fs(x, v, t) = fs0(v) + δfs(x, v, t) ! 0 (3.13)
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must always be satisfied, so this means that δfs(x, v, t) ! −fs0(v) for all values of
velocity v. Practically, this does lead to constraints on the allowable timestep in numerical
simulations to maintain a physically realizable fs(x, v, t) ! 0 everywhere.
Substituting (3.12) into the Vlasov equation (3.1), we obtain

∂δfs
∂t

= −v
∂δfs
∂x

+
qs
ms

∂φ

∂x

∂fs0
∂v

+
qs
ms

∂φ

∂x

∂δfs
∂v

. (3.14)

In this form, on the right-hand side, the first term is the (linear) ballistic term, the second
term is the linear wave-particle interaction term, and the third term is the nonlinear
wave-particle interaction term. Next, we substitute (3.14) into (3.11), yielding

∂Ws

∂t
=

∫

dx

∫

dv
1

2
msv

2

[

−v
∂δfs
∂x

+
qs
ms

∂φ

∂x

∂fs0
∂v

+
qs
ms

∂φ

∂x

∂δfs
∂v

]

(3.15)

We now evaluate the influence of each of these terms on the evolution of the microscopic
kinetic energy, Ws.
The first term, the ballistic term, may be written as a perfect differential in x, thereby

yielding a value of zero upon integration over x for periodic or infinite boundaries. The
second term, the linear wave-particle interaction term, may be written in the form

∫

dx
∂

∂x

{

qsφ

2

[
∫

dv v2
∂fs0
∂v

]}

= 0. (3.16)

Since we have chosen fs0 to be an even function of v, then its derivative ∂fs0/∂v is an
odd function, so the integrand of the velocity integral is an odd function evaluated over
an even interval, yielding zero. In addition, because fs0 is not a function of x, everything
in the braces is also a perfect differential, so this term will vanish upon integration over
x for any choice of fs0, not just even functions of v.
For the third term, the nonlinear wave-particle interaction term, we may integrate by

parts in velocity to yield the final result for the rate of change of microscopic kinetic
energy for species s,

∂Ws

∂t
= −

∫

dx
∂φ

∂x

∫

dv qsvδfs =

∫

dx jsE (3.17)

Therefore, the secular change of particle energy in the Vlasov-Poisson system occurs via
the nonlinear wave-particle interaction term in (3.14). Furthermore, the perturbations
in the distribution function arising from the collisionless transfer of energy from fields to
particles are generated by this term, making it possible to separate the fluctuations in
velocity space due to resonant wave-particle interactions from the (generally larger ampli-
tude) fluctuations generated by the ballistic term and the linear wave-particle interaction
term.
Note that linearization of the kinetic system leads to dropping the nonlinear wave-

particle interaction term, the third term on the right-hand side of (3.15). But this term
is necessary to describe the change in the energy of the particles Ws. So, although a
linearized system will describe the collisionless Landau damping of the electrostatic waves
of the Vlasov-Poisson system (Landau 1946), energy is not conserved in a linearized
system. The nonlinear wave-particle interaction term must be retained in order to achieve
energy conservation.
In summary, using measurements of the fluctuations in the particle distribution func-

tion δfs(x, v, t) and the electric field E(x, t), we may calculate the rate of transfer of
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odd function, so the integrand of the velocity integral is an odd function evaluated over
an even interval, yielding zero. In addition, because fs0 is not a function of x, everything
in the braces is also a perfect differential, so this term will vanish upon integration over
x for any choice of fs0, not just even functions of v.
For the third term, the nonlinear wave-particle interaction term, we may integrate by
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Therefore, the secular change of particle energy in the Vlasov-Poisson system occurs via
the nonlinear wave-particle interaction term in (3.14). Furthermore, the perturbations
in the distribution function arising from the collisionless transfer of energy from fields to
particles are generated by this term, making it possible to separate the fluctuations in
velocity space due to resonant wave-particle interactions from the (generally larger ampli-
tude) fluctuations generated by the ballistic term and the linear wave-particle interaction
term.
Note that linearization of the kinetic system leads to dropping the nonlinear wave-

particle interaction term, the third term on the right-hand side of (3.15). But this term
is necessary to describe the change in the energy of the particles Ws. So, although a
linearized system will describe the collisionless Landau damping of the electrostatic waves
of the Vlasov-Poisson system (Landau 1946), energy is not conserved in a linearized
system. The nonlinear wave-particle interaction term must be retained in order to achieve
energy conservation.
In summary, using measurements of the fluctuations in the particle distribution func-

tion δfs(x, v, t) and the electric field E(x, t), we may calculate the rate of transfer of
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energy from the fields to the particles by either form of the following expression,

∂Ws

∂t
= −

∫

dx

∫

dv qs
v2

2

∂δfs(x, v, t)

∂v
E(x, t) =

∫

dx

∫

dv qsvδfs(x, v, t)E(x, t) (3.18)

3.3. Diagnosing Secular Energy Transfer

The key challenge in diagnosing the collisionless damping of fluctuations in a turbulent
plasma is to separate the often small-amplitude signal of the secular energy transfer
from the generally much larger amplitude signal of the oscillating energy transfer. The
arguments of the preceding section suggest that by integrating over all space—or taking
a spatial average, as is done in quasilinear theory—we can average out the zero net effect
of the oscillating energy transfer and extract the smaller secular energy transfer that
is associated with collisionless damping. In this case, the spatial integration eliminates
the contribution from the ballistic and linear wave-particle interaction terms in (3.14),
isolating the nonzero net effect of the secular energy transfer due to the nonlinear wave-
particle interaction term.
Of course, in a numerical simulation where all of the spatial information is known,

spatial integration can be used to isolate the secular energy transfer. But such spatial
information is not accessible observationally, where spacecraft measurements are typically
made at only a single point (or at most, a few points) in space. Furthermore, numerical
simulations of plasma turbulence provide strong evidence that energy dissipation is often
highly localized in space (Wan et al. 2012; Karimabadi et al. 2013; TenBarge & Howes
2013; Wu et al. 2013; Zhdankin et al. 2013, 2015b); so, even in numerical simulations,
integration over a volume larger than the region of strong dissipation may obscure the
details of the local dissipation mechanism, making it more difficult to identify the physical
mechanism responsible. Here we aim to develop a method that can be used to analyze
the secular energy transfer using single-point measurements of the electromagnetic fields
and velocity distribution functions, enabling an improved analysis of the collisionless
damping of turbulent fluctuations in both spacecraft measurements and kinetic numerical
simulations.
Let us define the phase-space energy density for a particle species s by ws(x, v, t) =

msv2fs(x, v, t)/2. Note that, for the 1D-1V Vlasov-Poisson system, this is the energy
density per unit length per unit velocity. The integral of ws(x, v, t) over all velocity
yields the spatial energy density of the plasma species as a function of position, which
is the usual meaning of the term energy density. Subsequent integration over the spatial
volume yields the total microscopic kinetic energy of the species, Ws.
If we want to understand how the phase-space energy density evolves in time, we can

take the time derivative of ws(x, v, t) and replace ∂fs/∂t using the Vlasov equation to
obtain an expression for the instantaneous change of the phase-space energy density,

∂ws(x, v, t)

∂t
= −

1

2
msv

3 ∂δfs
∂x

− qs
v2

2

∂fs0(v)

∂v
E(x, t)− qs

v2

2

∂δfs(x, v, t)

∂v
E(x, t) (3.19)

From the analysis of the energy conservation equation (3.15), we know that, if this equa-
tion is integrated over all velocity and all physical space, the only third term contributes
to the secular energy transfer from fields to particles (or vice versa). However, in the ab-
sence of these integrations, all three terms contribute to the instantaneous phase-space
energy density change at each point in (x, v) phase space.

3.4. Field-Particle Correlations

The form of the term responsible for the secular energy transfer in (3.19) suggests that the
product of (−qsv2/2)(∂δfs(x, v, t)/∂v) and E(x, t) provides a direct measure of the rate of
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functions. This theoretical insight will be used to devise a novel analysis strategy using
correlated field and particle measurements to identify definitively the action of collision-
less wave-particle interactions in heliospheric plasmas using either spacecraft measure-
ments or nonlinear kinetic numerical simulations.
Here we review the properties of electrostatic fluctuations in a collisionless, unmag-

netized plasma that are relevant to the aim of identifying the secular energy transfer
via collisionless wave-particle interactions. For simplicity in the analytical calculations
presented here, we consider a strictly one-dimensional (1D-1V) kinetic system, but do
note that the physics of electrostatic fluctuations (∇ × E = 0) remains unchanged in
a realistic three-dimensional plasma. The dynamics of the electrostatic fluctuations in
a collisionless 1D-1V plasma is governed by the Vlasov-Poisson equations, where the
Vlasov equation determines the collisionless evolution of the distribution function for
each species s, fs(x, v, t), given by

∂fs
∂t

+ v
∂fs
∂x

−
qs
ms

∂φ

∂x

∂fs
∂v

= 0 (3.1)

and the Poisson equation yields the scalar electrostatic potential, φ(x, t),

∂2φ

∂x2
= −4π

∑

s

∫ +∞

−∞
dv qsfs. (3.2)

Physically, the second term of the Vlasov equation describes the ballistic behavior of
the particles in the collisionless plasma and the third term governs the response of the
particles to the electric field E = −∂φ/∂x. Here we denote these terms the ballistic term
and the wave-particle interaction term, respectively.

3.1. Energy Conservation

To derive the expression for the conserved energy of electrostatic fluctuations in an
unmagnetized plasma, we begin with the electrostatic analogue of Poynting’s theorem.
Beginning with the 1D electrostatic limit of the Ampere-Maxwell Law, ∂E/∂t = −4πj,
we multiply by E to obtain the rate of change of electrostatic field energy density,

∂

∂t

(

E2

8π

)

= −jE (3.3)

Next, we multiply the Vlasov equation (3.1) for species s by msv2/2 and integrate
over velocity and position. Exchanging the order of differentiation and integration of the
independent variables, we may obtain the form

∂

∂t

∫

dx

∫

dv
1

2
msv

2fs +

∫

dx
∂

∂x

[
∫

dv
1

2
msv

3fs

]

−
∫

dx
∂φ

∂x

∫

dv

(

qsv2

2

)

∂fs
∂v

= 0

(3.4)
The first term of this equation represents the rate of change of the microscopic kinetic
energy of species s

Ws ≡
∫ L/2

−L/2
dx

∫ ∞

−∞
dv

1

2
msv

2fs. (3.5)

The second term, associated with the ballistic behavior of particles, is a perfect differential
in x, yielding zero for either periodic boundary conditions, fs(x = −L/2, v) = fs(x =
L/2, v), or boundary conditions at infinity, limL→∞ fs(x = ±L/2, v) = 0. Physically, the
ballistic term can only transport energy from one position to another, so when integrated
over the volume yields a net change of zero for Ws. The third term may be integrated
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must always be satisfied, so this means that δfs(x, v, t) ! −fs0(v) for all values of
velocity v. Practically, this does lead to constraints on the allowable timestep in numerical
simulations to maintain a physically realizable fs(x, v, t) ! 0 everywhere.
Substituting (3.12) into the Vlasov equation (3.1), we obtain

∂δfs
∂t

= −v
∂δfs
∂x

+
qs
ms

∂φ

∂x

∂fs0
∂v

+
qs
ms

∂φ

∂x

∂δfs
∂v

. (3.14)

In this form, on the right-hand side, the first term is the (linear) ballistic term, the second
term is the linear wave-particle interaction term, and the third term is the nonlinear
wave-particle interaction term. Next, we substitute (3.14) into (3.11), yielding

∂Ws

∂t
=

∫

dx

∫

dv
1

2
msv

2

[

−v
∂δfs
∂x

+
qs
ms

∂φ

∂x

∂fs0
∂v

+
qs
ms

∂φ

∂x

∂δfs
∂v

]

(3.15)

We now evaluate the influence of each of these terms on the evolution of the microscopic
kinetic energy, Ws.
The first term, the ballistic term, may be written as a perfect differential in x, thereby

yielding a value of zero upon integration over x for periodic or infinite boundaries. The
second term, the linear wave-particle interaction term, may be written in the form

∫

dx
∂

∂x

{

qsφ

2

[
∫

dv v2
∂fs0
∂v

]}

= 0. (3.16)

Since we have chosen fs0 to be an even function of v, then its derivative ∂fs0/∂v is an
odd function, so the integrand of the velocity integral is an odd function evaluated over
an even interval, yielding zero. In addition, because fs0 is not a function of x, everything
in the braces is also a perfect differential, so this term will vanish upon integration over
x for any choice of fs0, not just even functions of v.
For the third term, the nonlinear wave-particle interaction term, we may integrate by

parts in velocity to yield the final result for the rate of change of microscopic kinetic
energy for species s,

∂Ws

∂t
= −

∫

dx
∂φ

∂x

∫

dv qsvδfs =

∫

dx jsE (3.17)

Therefore, the secular change of particle energy in the Vlasov-Poisson system occurs via
the nonlinear wave-particle interaction term in (3.14). Furthermore, the perturbations
in the distribution function arising from the collisionless transfer of energy from fields to
particles are generated by this term, making it possible to separate the fluctuations in
velocity space due to resonant wave-particle interactions from the (generally larger ampli-
tude) fluctuations generated by the ballistic term and the linear wave-particle interaction
term.
Note that linearization of the kinetic system leads to dropping the nonlinear wave-

particle interaction term, the third term on the right-hand side of (3.15). But this term
is necessary to describe the change in the energy of the particles Ws. So, although a
linearized system will describe the collisionless Landau damping of the electrostatic waves
of the Vlasov-Poisson system (Landau 1946), energy is not conserved in a linearized
system. The nonlinear wave-particle interaction term must be retained in order to achieve
energy conservation.
In summary, using measurements of the fluctuations in the particle distribution func-

tion δfs(x, v, t) and the electric field E(x, t), we may calculate the rate of transfer of
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energy from the fields to the particles by either form of the following expression,

∂Ws

∂t
= −

∫

dx

∫

dv qs
v2

2

∂δfs(x, v, t)

∂v
E(x, t) =

∫

dx

∫

dv qsvδfs(x, v, t)E(x, t) (3.18)

3.3. Diagnosing Secular Energy Transfer

The key challenge in diagnosing the collisionless damping of fluctuations in a turbulent
plasma is to separate the often small-amplitude signal of the secular energy transfer
from the generally much larger amplitude signal of the oscillating energy transfer. The
arguments of the preceding section suggest that by integrating over all space—or taking
a spatial average, as is done in quasilinear theory—we can average out the zero net effect
of the oscillating energy transfer and extract the smaller secular energy transfer that
is associated with collisionless damping. In this case, the spatial integration eliminates
the contribution from the ballistic and linear wave-particle interaction terms in (3.14),
isolating the nonzero net effect of the secular energy transfer due to the nonlinear wave-
particle interaction term.
Of course, in a numerical simulation where all of the spatial information is known,

spatial integration can be used to isolate the secular energy transfer. But such spatial
information is not accessible observationally, where spacecraft measurements are typically
made at only a single point (or at most, a few points) in space. Furthermore, numerical
simulations of plasma turbulence provide strong evidence that energy dissipation is often
highly localized in space (Wan et al. 2012; Karimabadi et al. 2013; TenBarge & Howes
2013; Wu et al. 2013; Zhdankin et al. 2013, 2015b); so, even in numerical simulations,
integration over a volume larger than the region of strong dissipation may obscure the
details of the local dissipation mechanism, making it more difficult to identify the physical
mechanism responsible. Here we aim to develop a method that can be used to analyze
the secular energy transfer using single-point measurements of the electromagnetic fields
and velocity distribution functions, enabling an improved analysis of the collisionless
damping of turbulent fluctuations in both spacecraft measurements and kinetic numerical
simulations.
Let us define the phase-space energy density for a particle species s by ws(x, v, t) =

msv2fs(x, v, t)/2. Note that, for the 1D-1V Vlasov-Poisson system, this is the energy
density per unit length per unit velocity. The integral of ws(x, v, t) over all velocity
yields the spatial energy density of the plasma species as a function of position, which
is the usual meaning of the term energy density. Subsequent integration over the spatial
volume yields the total microscopic kinetic energy of the species, Ws.
If we want to understand how the phase-space energy density evolves in time, we can

take the time derivative of ws(x, v, t) and replace ∂fs/∂t using the Vlasov equation to
obtain an expression for the instantaneous change of the phase-space energy density,

∂ws(x, v, t)

∂t
= −

1

2
msv

3 ∂δfs
∂x

− qs
v2

2

∂fs0(v)

∂v
E(x, t)− qs

v2

2

∂δfs(x, v, t)

∂v
E(x, t) (3.19)

From the analysis of the energy conservation equation (3.15), we know that, if this equa-
tion is integrated over all velocity and all physical space, the only third term contributes
to the secular energy transfer from fields to particles (or vice versa). However, in the ab-
sence of these integrations, all three terms contribute to the instantaneous phase-space
energy density change at each point in (x, v) phase space.

3.4. Field-Particle Correlations

The form of the term responsible for the secular energy transfer in (3.19) suggests that the
product of (−qsv2/2)(∂δfs(x, v, t)/∂v) and E(x, t) provides a direct measure of the rate of
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energy transfer (possibly including an oscillating component). To isolate the small secular
component, we take the unnormalized field-particle correlation, Cτ (−qsv2/2∂δfs/∂v, E),
at a single point in space over a selected interval of time τ . By correlating the two signals
over a sufficiently long time (at least several linear wave periods, τ ≫ 2πω), it enables
the oscillating energy transfer to be averaged out, extracting the smaller signal of the
secular energy transfer.
For measurements of the velocity distribution and the electric field at a single point in

space, x = x0, this correlation is a function of velocity, time, and the correlation interval,

C1(v, t, τ) = Cτ

(

−qs
v2

2

∂δfs(x0, v, t)

∂v
, E(x0, t)

)

. (3.20)

Therefore, the general idea of diagnosing the energy transfer at each point in (x, v) phase
space reduces, due to the observational constraints of single-point measurements, to the
case of determining the distribution of the energy transfer rate in velocity space. A key
advance with this method is that determining how the secular energy transfer rate varies
in velocity space provides valuable new information about the physical mechanism re-
sponsible for the collisionless damping of the fluctuations. Different mechanisms, such as
Landau damping or stochastic ion heating, are likely to have distinct signatures of this
damping in velocity space. In this paper, we illustrate this field-particle correlation analy-
sis method using the case of the Landau damping of Langmuir in a 1D-1V Vlasov-Poisson
plasma, but the concept of using field-particle correlations to diagnose collisionless en-
ergy transfer is extremely general, and it can be also applied to examine the damping of
turbulence in heliospheric plasmas using single-point spacecraft measurements.
In closing, there are two issues that merit further discussion. First, because the product

of the two terms that are correlated is a direct measure of the instantaneous collisionless
energy transfer (specifically, just the component due to the nonlinear wave-particle inter-
action term), the field-particle correlation is to be performed in the following way: (i) the
mean values of the two correlated variables are not subtracted before multiplication; and
(ii) the correlation is not normalized by the variances of each of the correlated variables.
Although a normalized correlation can be performed and indeed contains information
about the nature of the collisionless wave-particle interactions, the process of normaliza-
tion effectively removes the amplitude variation of the energy transfer rate as a function
of velocity, a vital piece of information provided by this analysis.
The second issue regards the applicability of the particular field-particle correlation

given in (3.20) to spacecraft observations. The often low velocity-space resolution of
particle measurements by spacecraft instrumentation and the corruption by noise for
low particle count rates mean that accurate computation of the necessary derivative
∂δfs(x, v, t)/∂v may be difficult, or even impossible. But, as shown in Section 3.2, upon
integration over velocity space, both (−qsv2/2)(∂δfs(x, v, t)/∂v) and qsvδfs(x, v, t) yield
the same result for the total species current, js(x, t). Therefore, we propose an alternative
field-particle correlation

C2(v, t, τ) = Cτ (qsvδfs(x0, v, t), E(x0, t)) (3.21)

that may be more suitable for implementation with low resolution spacecraft measure-
ments of particle velocity distribution functions. Different collisionless damping mecha-
nisms are likely to produce distinct signatures of any chosen form of field-particle corre-
lation in velocity space. So, although the form qsvδfs(x, v, t)E(x, t) does not correspond
directly to the energy transfer rate at a point in (x, v) phase space as given by (3.19),
this alternative field-particle correlation may still be valuable in distinguishing one col-
lisionless damping process from another.
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at a single point in space over a selected interval of time τ . By correlating the two signals
over a sufficiently long time (at least several linear wave periods, τ ≫ 2πω), it enables
the oscillating energy transfer to be averaged out, extracting the smaller signal of the
secular energy transfer.
For measurements of the velocity distribution and the electric field at a single point in

space, x = x0, this correlation is a function of velocity, time, and the correlation interval,

C1(v, t, τ) = Cτ

(

−qs
v2

2

∂δfs(x0, v, t)

∂v
, E(x0, t)

)

. (3.20)

Therefore, the general idea of diagnosing the energy transfer at each point in (x, v) phase
space reduces, due to the observational constraints of single-point measurements, to the
case of determining the distribution of the energy transfer rate in velocity space. A key
advance with this method is that determining how the secular energy transfer rate varies
in velocity space provides valuable new information about the physical mechanism re-
sponsible for the collisionless damping of the fluctuations. Different mechanisms, such as
Landau damping or stochastic ion heating, are likely to have distinct signatures of this
damping in velocity space. In this paper, we illustrate this field-particle correlation analy-
sis method using the case of the Landau damping of Langmuir in a 1D-1V Vlasov-Poisson
plasma, but the concept of using field-particle correlations to diagnose collisionless en-
ergy transfer is extremely general, and it can be also applied to examine the damping of
turbulence in heliospheric plasmas using single-point spacecraft measurements.
In closing, there are two issues that merit further discussion. First, because the product

of the two terms that are correlated is a direct measure of the instantaneous collisionless
energy transfer (specifically, just the component due to the nonlinear wave-particle inter-
action term), the field-particle correlation is to be performed in the following way: (i) the
mean values of the two correlated variables are not subtracted before multiplication; and
(ii) the correlation is not normalized by the variances of each of the correlated variables.
Although a normalized correlation can be performed and indeed contains information
about the nature of the collisionless wave-particle interactions, the process of normaliza-
tion effectively removes the amplitude variation of the energy transfer rate as a function
of velocity, a vital piece of information provided by this analysis.
The second issue regards the applicability of the particular field-particle correlation

given in (3.20) to spacecraft observations. The often low velocity-space resolution of
particle measurements by spacecraft instrumentation and the corruption by noise for
low particle count rates mean that accurate computation of the necessary derivative
∂δfs(x, v, t)/∂v may be difficult, or even impossible. But, as shown in Section 3.2, upon
integration over velocity space, both (−qsv2/2)(∂δfs(x, v, t)/∂v) and qsvδfs(x, v, t) yield
the same result for the total species current, js(x, t). Therefore, we propose an alternative
field-particle correlation

C2(v, t, τ) = Cτ (qsvδfs(x0, v, t), E(x0, t)) (3.21)

that may be more suitable for implementation with low resolution spacecraft measure-
ments of particle velocity distribution functions. Different collisionless damping mecha-
nisms are likely to produce distinct signatures of any chosen form of field-particle corre-
lation in velocity space. So, although the form qsvδfs(x, v, t)E(x, t) does not correspond
directly to the energy transfer rate at a point in (x, v) phase space as given by (3.19),
this alternative field-particle correlation may still be valuable in distinguishing one col-
lisionless damping process from another.
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Figure 10. For Case I, (a) the total perturbed electron distribution function δfe(0, v, t)
(colormap) and (b) electric field E(0, t) measured at x = 0 as a function of normalized time

ωpet.

these definitions, the correlation at time t = ti is defined by

C1(v, ti, τ) =
1

N

i+N
∑

j=i

qs
v2

2

∂δfsj(v)

∂v
Ej (6.1)

The discrete velocity derivatives are computed using the same second-order, centered
finite difference scheme described in Appendix A. Note also that this scheme may be
used even for a point of measurement moving with respect to the plasma by simply
replacing x0 = x0(t).

6.1. Case I: Moderately Damped Standing Langmuir Wave

Before presenting the results of the field-particle correlation technique applied to the
problem of the collisionless damping of electrostatic Langmuir waves, we begin with a plot
of the single-point measurements used for this analysis. For the case of the moderately
damped standing Langmuir wave pattern presented in section 5.1, we plot in figure 10
(a) the total perturbed electron distribution function δfe(0, v, t) (colormap) and (b) the
electric field E(0, t) measured at x = 0 as a function of normalized time ωpet. Here the
electric field is normalized to E0 = qeEλde/te. The data plotted in figure 10 correspond
directly to observable quantities derived from single-point spacecraft measurements.
In figure 11, we plot the products of the quantities used in the correlations C1(v, t, τ)

and C2(v, t, τ): (a) (−qev2/2)(∂δfe(0, v, t)/∂v)E(0, t) and (b) qevδfe(0, v, t)E(0, t) as a
function of velocity v/vte and time ωpet. Note that the regions of velocity space where
these functions have a significant amplitude are not especially well correlated with the
resonant velocities (dot-dashed green). Without taking the correlation of these quanti-
ties over an appropriate time interval τ (typically one or more periods of a wave), the
small amplitude signal of the secular energy transfer is masked by the much larger am-
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Figure 9. (a) Total electron distribution function evaluated at position x = 0, fe(0, v, t) (thin
magenta), the spatially averaged, quasilinear distribution function feQL(v, t) (thick magenta),
and the equilibirum electron distribution function fe0 (black). (b) The nonlinear wave-parti-
cle interaction component of the perturbed electron distribution function at position x = 0,
δfeWn(0, v, t) (thin red) and the quasilinear perturbed distribution function δfeQL(v, t) (thick
red) coincide exactly here. The quasilinear flattening of the distribution function at the reso-
nant velocity v = ω/k (dashed black) is apparent in the total quasilinear distribution function
feQL(v, t) (thick magenta).

6. Field-Particle Correlations

Here we define specifically how we compute the unnormalized correlation given in
(3.20). Consider distribution function and electric field measurements at point x = x0

measured at a time cadence of ∆t. Labelling the discrete times of the measurements as
tj ≡ t(j∆t) for j = 0, 1, 2, . . ., we define δfsj(v) ≡ δfs(x0, v, tj) and Ej ≡ E(x0, tj). For
a choosen correlation time of τ = N∆t, N points will be used for the correlation. With
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Here we define specifically how we compute the unnormalized correlation given in
(3.20). Consider distribution function and electric field measurements at point x = x0

measured at a time cadence of ∆t. Labelling the discrete times of the measurements as
tj ≡ t(j∆t) for j = 0, 1, 2, . . ., we define δfsj(v) ≡ δfs(x0, v, tj) and Ej ≡ E(x0, tj). For
a choosen correlation time of τ = N∆t, N points will be used for the correlation. With
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energy from the fields to the particles by either form of the following expression,

∂Ws

∂t
= −

∫

dx

∫

dv qs
v2

2

∂δfs(x, v, t)

∂v
E(x, t) =

∫

dx

∫

dv qsvδfs(x, v, t)E(x, t) (3.18)

3.3. Diagnosing Secular Energy Transfer

The key challenge in diagnosing the collisionless damping of fluctuations in a turbulent
plasma is to separate the often small-amplitude signal of the secular energy transfer
from the generally much larger amplitude signal of the oscillating energy transfer. The
arguments of the preceding section suggest that by integrating over all space—or taking
a spatial average, as is done in quasilinear theory—we can average out the zero net effect
of the oscillating energy transfer and extract the smaller secular energy transfer that
is associated with collisionless damping. In this case, the spatial integration eliminates
the contribution from the ballistic and linear wave-particle interaction terms in (3.14),
isolating the nonzero net effect of the secular energy transfer due to the nonlinear wave-
particle interaction term.
Of course, in a numerical simulation where all of the spatial information is known,

spatial integration can be used to isolate the secular energy transfer. But such spatial
information is not accessible observationally, where spacecraft measurements are typically
made at only a single point (or at most, a few points) in space. Furthermore, numerical
simulations of plasma turbulence provide strong evidence that energy dissipation is often
highly localized in space (Wan et al. 2012; Karimabadi et al. 2013; TenBarge & Howes
2013; Wu et al. 2013; Zhdankin et al. 2013, 2015b); so, even in numerical simulations,
integration over a volume larger than the region of strong dissipation may obscure the
details of the local dissipation mechanism, making it more difficult to identify the physical
mechanism responsible. Here we aim to develop a method that can be used to analyze
the secular energy transfer using single-point measurements of the electromagnetic fields
and velocity distribution functions, enabling an improved analysis of the collisionless
damping of turbulent fluctuations in both spacecraft measurements and kinetic numerical
simulations.
Let us define the phase-space energy density for a particle species s by ws(x, v, t) =

msv2fs(x, v, t)/2. Note that, for the 1D-1V Vlasov-Poisson system, this is the energy
density per unit length per unit velocity. The integral of ws(x, v, t) over all velocity
yields the spatial energy density of the plasma species as a function of position, which
is the usual meaning of the term energy density. Subsequent integration over the spatial
volume yields the total microscopic kinetic energy of the species, Ws.
If we want to understand how the phase-space energy density evolves in time, we can

take the time derivative of ws(x, v, t) and replace ∂fs/∂t using the Vlasov equation to
obtain an expression for the instantaneous change of the phase-space energy density,

∂ws(x, v, t)

∂t
= −

1

2
msv

3 ∂δfs
∂x

− qs
v2

2

∂fs0(v)

∂v
E(x, t)− qs

v2

2

∂δfs(x, v, t)

∂v
E(x, t) (3.19)

From the analysis of the energy conservation equation (3.15), we know that, if this equa-
tion is integrated over all velocity and all physical space, the only third term contributes
to the secular energy transfer from fields to particles (or vice versa). However, in the ab-
sence of these integrations, all three terms contribute to the instantaneous phase-space
energy density change at each point in (x, v) phase space.

3.4. Field-Particle Correlations

The form of the term responsible for the secular energy transfer in (3.19) suggests that the
product of (−qsv2/2)(∂δfs(x, v, t)/∂v) and E(x, t) provides a direct measure of the rate of
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energy transfer (possibly including an oscillating component). To isolate the small secular
component, we take the unnormalized field-particle correlation, Cτ (−qsv2/2∂δfs/∂v, E),
at a single point in space over a selected interval of time τ . By correlating the two signals
over a sufficiently long time (at least several linear wave periods, τ ≫ 2πω), it enables
the oscillating energy transfer to be averaged out, extracting the smaller signal of the
secular energy transfer.
For measurements of the velocity distribution and the electric field at a single point in

space, x = x0, this correlation is a function of velocity, time, and the correlation interval,

C1(v, t, τ) = Cτ

(

−qs
v2

2

∂δfs(x0, v, t)

∂v
, E(x0, t)

)

. (3.20)

Therefore, the general idea of diagnosing the energy transfer at each point in (x, v) phase
space reduces, due to the observational constraints of single-point measurements, to the
case of determining the distribution of the energy transfer rate in velocity space. A key
advance with this method is that determining how the secular energy transfer rate varies
in velocity space provides valuable new information about the physical mechanism re-
sponsible for the collisionless damping of the fluctuations. Different mechanisms, such as
Landau damping or stochastic ion heating, are likely to have distinct signatures of this
damping in velocity space. In this paper, we illustrate this field-particle correlation analy-
sis method using the case of the Landau damping of Langmuir in a 1D-1V Vlasov-Poisson
plasma, but the concept of using field-particle correlations to diagnose collisionless en-
ergy transfer is extremely general, and it can be also applied to examine the damping of
turbulence in heliospheric plasmas using single-point spacecraft measurements.
In closing, there are two issues that merit further discussion. First, because the product

of the two terms that are correlated is a direct measure of the instantaneous collisionless
energy transfer (specifically, just the component due to the nonlinear wave-particle inter-
action term), the field-particle correlation is to be performed in the following way: (i) the
mean values of the two correlated variables are not subtracted before multiplication; and
(ii) the correlation is not normalized by the variances of each of the correlated variables.
Although a normalized correlation can be performed and indeed contains information
about the nature of the collisionless wave-particle interactions, the process of normaliza-
tion effectively removes the amplitude variation of the energy transfer rate as a function
of velocity, a vital piece of information provided by this analysis.
The second issue regards the applicability of the particular field-particle correlation

given in (3.20) to spacecraft observations. The often low velocity-space resolution of
particle measurements by spacecraft instrumentation and the corruption by noise for
low particle count rates mean that accurate computation of the necessary derivative
∂δfs(x, v, t)/∂v may be difficult, or even impossible. But, as shown in Section 3.2, upon
integration over velocity space, both (−qsv2/2)(∂δfs(x, v, t)/∂v) and qsvδfs(x, v, t) yield
the same result for the total species current, js(x, t). Therefore, we propose an alternative
field-particle correlation

C2(v, t, τ) = Cτ (qsvδfs(x0, v, t), E(x0, t)) (3.21)

that may be more suitable for implementation with low resolution spacecraft measure-
ments of particle velocity distribution functions. Different collisionless damping mecha-
nisms are likely to produce distinct signatures of any chosen form of field-particle corre-
lation in velocity space. So, although the form qsvδfs(x, v, t)E(x, t) does not correspond
directly to the energy transfer rate at a point in (x, v) phase space as given by (3.19),
this alternative field-particle correlation may still be valuable in distinguishing one col-
lisionless damping process from another.
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energy transfer (possibly including an oscillating component). To isolate the small secular
component, we take the unnormalized field-particle correlation, Cτ (−qsv2/2∂δfs/∂v, E),
at a single point in space over a selected interval of time τ . By correlating the two signals
over a sufficiently long time (at least several linear wave periods, τ ≫ 2πω), it enables
the oscillating energy transfer to be averaged out, extracting the smaller signal of the
secular energy transfer.
For measurements of the velocity distribution and the electric field at a single point in
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)
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Therefore, the general idea of diagnosing the energy transfer at each point in (x, v) phase
space reduces, due to the observational constraints of single-point measurements, to the
case of determining the distribution of the energy transfer rate in velocity space. A key
advance with this method is that determining how the secular energy transfer rate varies
in velocity space provides valuable new information about the physical mechanism re-
sponsible for the collisionless damping of the fluctuations. Different mechanisms, such as
Landau damping or stochastic ion heating, are likely to have distinct signatures of this
damping in velocity space. In this paper, we illustrate this field-particle correlation analy-
sis method using the case of the Landau damping of Langmuir in a 1D-1V Vlasov-Poisson
plasma, but the concept of using field-particle correlations to diagnose collisionless en-
ergy transfer is extremely general, and it can be also applied to examine the damping of
turbulence in heliospheric plasmas using single-point spacecraft measurements.
In closing, there are two issues that merit further discussion. First, because the product

of the two terms that are correlated is a direct measure of the instantaneous collisionless
energy transfer (specifically, just the component due to the nonlinear wave-particle inter-
action term), the field-particle correlation is to be performed in the following way: (i) the
mean values of the two correlated variables are not subtracted before multiplication; and
(ii) the correlation is not normalized by the variances of each of the correlated variables.
Although a normalized correlation can be performed and indeed contains information
about the nature of the collisionless wave-particle interactions, the process of normaliza-
tion effectively removes the amplitude variation of the energy transfer rate as a function
of velocity, a vital piece of information provided by this analysis.
The second issue regards the applicability of the particular field-particle correlation

given in (3.20) to spacecraft observations. The often low velocity-space resolution of
particle measurements by spacecraft instrumentation and the corruption by noise for
low particle count rates mean that accurate computation of the necessary derivative
∂δfs(x, v, t)/∂v may be difficult, or even impossible. But, as shown in Section 3.2, upon
integration over velocity space, both (−qsv2/2)(∂δfs(x, v, t)/∂v) and qsvδfs(x, v, t) yield
the same result for the total species current, js(x, t). Therefore, we propose an alternative
field-particle correlation

C2(v, t, τ) = Cτ (qsvδfs(x0, v, t), E(x0, t)) (3.21)

that may be more suitable for implementation with low resolution spacecraft measure-
ments of particle velocity distribution functions. Different collisionless damping mecha-
nisms are likely to produce distinct signatures of any chosen form of field-particle corre-
lation in velocity space. So, although the form qsvδfs(x, v, t)E(x, t) does not correspond
directly to the energy transfer rate at a point in (x, v) phase space as given by (3.19),
this alternative field-particle correlation may still be valuable in distinguishing one col-
lisionless damping process from another.
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Figure 10. For Case I, (a) the total perturbed electron distribution function δfe(0, v, t)
(colormap) and (b) electric field E(0, t) measured at x = 0 as a function of normalized time

ωpet.

these definitions, the correlation at time t = ti is defined by

C1(v, ti, τ) =
1

N

i+N
∑

j=i

qs
v2

2

∂δfsj(v)

∂v
Ej (6.1)

The discrete velocity derivatives are computed using the same second-order, centered
finite difference scheme described in Appendix A. Note also that this scheme may be
used even for a point of measurement moving with respect to the plasma by simply
replacing x0 = x0(t).

6.1. Case I: Moderately Damped Standing Langmuir Wave

Before presenting the results of the field-particle correlation technique applied to the
problem of the collisionless damping of electrostatic Langmuir waves, we begin with a plot
of the single-point measurements used for this analysis. For the case of the moderately
damped standing Langmuir wave pattern presented in section 5.1, we plot in figure 10
(a) the total perturbed electron distribution function δfe(0, v, t) (colormap) and (b) the
electric field E(0, t) measured at x = 0 as a function of normalized time ωpet. Here the
electric field is normalized to E0 = qeEλde/te. The data plotted in figure 10 correspond
directly to observable quantities derived from single-point spacecraft measurements.
In figure 11, we plot the products of the quantities used in the correlations C1(v, t, τ)

and C2(v, t, τ): (a) (−qev2/2)(∂δfe(0, v, t)/∂v)E(0, t) and (b) qevδfe(0, v, t)E(0, t) as a
function of velocity v/vte and time ωpet. Note that the regions of velocity space where
these functions have a significant amplitude are not especially well correlated with the
resonant velocities (dot-dashed green). Without taking the correlation of these quanti-
ties over an appropriate time interval τ (typically one or more periods of a wave), the
small amplitude signal of the secular energy transfer is masked by the much larger am-
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Figure 9. (a) Total electron distribution function evaluated at position x = 0, fe(0, v, t) (thin
magenta), the spatially averaged, quasilinear distribution function feQL(v, t) (thick magenta),
and the equilibirum electron distribution function fe0 (black). (b) The nonlinear wave-parti-
cle interaction component of the perturbed electron distribution function at position x = 0,
δfeWn(0, v, t) (thin red) and the quasilinear perturbed distribution function δfeQL(v, t) (thick
red) coincide exactly here. The quasilinear flattening of the distribution function at the reso-
nant velocity v = ω/k (dashed black) is apparent in the total quasilinear distribution function
feQL(v, t) (thick magenta).

6. Field-Particle Correlations

Here we define specifically how we compute the unnormalized correlation given in
(3.20). Consider distribution function and electric field measurements at point x = x0

measured at a time cadence of ∆t. Labelling the discrete times of the measurements as
tj ≡ t(j∆t) for j = 0, 1, 2, . . ., we define δfsj(v) ≡ δfs(x0, v, tj) and Ej ≡ E(x0, tj). For
a choosen correlation time of τ = N∆t, N points will be used for the correlation. With
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magenta), the spatially averaged, quasilinear distribution function feQL(v, t) (thick magenta),
and the equilibirum electron distribution function fe0 (black). (b) The nonlinear wave-parti-
cle interaction component of the perturbed electron distribution function at position x = 0,
δfeWn(0, v, t) (thin red) and the quasilinear perturbed distribution function δfeQL(v, t) (thick
red) coincide exactly here. The quasilinear flattening of the distribution function at the reso-
nant velocity v = ω/k (dashed black) is apparent in the total quasilinear distribution function
feQL(v, t) (thick magenta).

6. Field-Particle Correlations

Here we define specifically how we compute the unnormalized correlation given in
(3.20). Consider distribution function and electric field measurements at point x = x0

measured at a time cadence of ∆t. Labelling the discrete times of the measurements as
tj ≡ t(j∆t) for j = 0, 1, 2, . . ., we define δfsj(v) ≡ δfs(x0, v, tj) and Ej ≡ E(x0, tj). For
a choosen correlation time of τ = N∆t, N points will be used for the correlation. With
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Field-Particle Correlations Parallel and Perpendicular

Gyrotropic (vk, v?) velocity-space signatures: AstroGK turbulence simula-

tion for (a) Landau damping using CEk and (b) transit-time damping using

C�Bk ; HVM turbulence simulation for (c) cyclotron damping using CE? ; theo-

retical prediction for (d) stochastic ion heating using CE? ; AstroGK strong-guide

field reconnection simulation for (e) ion and (f) electron energization using CEk .
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In three dimensions, the field-particle correlation can be split into parallel and perpendicular 
portions. The interpretation of the correlation is simplest in gyrotropic space.
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In three dimensions, the field-particle correlation can be split into parallel and perpendicular 
portions. The interpretation of the correlation is simplest in gyrotropic space.
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Collisionless Transverse Shock



Transverse Shock Simulation Setup

Injection method to initialize the shock
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Transverse Shock Non-Adiabatic Evolution, Electrons

fe(vy=0)

fe(vx=0)

s = �
Z

f log fdv/

Z
fdv

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

s, T



Transverse Shock Non-Adiabatic Evolution, Electrons

x = 475 de Ex, 10Ey



Transverse Shock Evolution, Ions

x = 475 de



Transverse Shock Non-Adiabatic Evolution, Ions

Ex, 10Ey



Transverse Shock Non-Adiabatic Evolution, Ions

fi(vy=0)

fi(vx=0)

s = �
Z

f log fdv/

Z
fdv

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

s, T



Transverse Shock Non-Adiabatic Evolution, Ions

x = 475 de Ex, 10Ey



Transverse Shock Non-Adiabatic Evolution, Ions

x = 475 de Ex, 10Ey



• Using the continuum Vlasov-Maxwell simulation portion of Gkeyll, we have successfully 
performed fully kinetic simulations of collisional magnetic pumping and a 1x-2v, 
collisionless transverse shock.

• The location and source of electron entropy production and heating in the transverse shock 
has been identified.

• We have employed the field-particle correlation analysis technique to identify the phase 
space structure of the energy transfer between the fields and particles. 

• In most cases, the dominant source of particle energization seen with the field-particle 
correlation technique is cyclotron-like dissipation, which is most intense at the shock 
crossing.

Conclusions


